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Abstract 

Recently, the intuitionistic fuzzy stability of Jensen-type functional equation was 
proved. In this note, we show the intuitionistic fuzzy stability of the Jensen-type 
functional equation by using the fixed point alternative. 

1. Introduction 

The stability problem of functional equations originated from a 
question of Ulam [14] concerning the stability of group homomorphisms. 
Hyers [9] gave a first affirmative partial answer to the question of Ulam 
for Banach spaces. Hyers Theorem was generalized by Aoki [1] for 
additive mappings, and by Rassias [10] for linear mappings by considering 
an unbounded Cauchy difference. The paper of Rassias has provided a lot 
of influence in the development of what we call generalized Hyers-Ulam-
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Rassias stability of functional equations. In 1990, Rassias [12] asked 
whether such a theorem can also be proved for .1≥p  In 1991, Gajda [7] 
gave an affirmative solution to this question when ,1>p  but it was 
proved by Gajda [7] and Rassias and Semrl [11] that one cannot prove an 
analogous theorem when .1=p  In 1994, a generalization was obtained 

by Gavruta [8], who replaced the bound ( )pp yx +ε  by a general 
control function ( )., yxφ  Beginning around 1980, the stability problems of 
several functional equations and approximate homomorphisms have been 
extensively investigated by a number of authors and there are many 
interesting results concerning this problem. 

In the following, we first recall some fundamental results in fixed 
point theory. 

Let X be a set. A function [ ]∞→× ,0: XXd  is called a generalized 
metric on X if d satisfies  

(1) ( ) ,0, =yxd  if and only if ;yx =   

(2) ( ) ( ),,, xydyxd =  for all ;, Xyx ∈   

(3) ( ) ( ) ( ),,,, zydyxdzxd +≤  for all .,, Xzyx ∈  

We recall the following theorem of Diaz and Margolis [6]. 

Theorem 1.1 (see [6]). Let ( )dX ,  be a complete generalized metric 
space and let XXJ →:  be a strictly contractive mapping with Lipschitz 
constant .10 << L  Then for each given element ,Xx ∈  either 

( ) ,, 1 ∞=+ xJxJd nn  (1.1) 

for all nonnegative integers n or there exists a nonnegative integer 0n  such 
that 

(1) ( ) ,, 1 ∞<+ xJxJd nn  for all ;0nn ≥  

(2) the sequence { }xJ n  converges to a fixed point ∗y  of J; 

(3) ∗y  is the unique fixed point of J in the set { ( )yxJdXyY n ,: 0∈=  
};∞<   
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(4) ( ) ( ),,1
1, JyydLyyd
−

≤∗  for all .Yy ∈  

In 2003, Cadariu and Radu applied the fixed-point method to the 
investigation of the Jensen functional equation (see [3], [4]) for the first 
time. By using fixed point methods, the stability problems of several 
functional equations have been extensively investigated by a number of 
authors. 

The new notion of intuitionistic fuzzy metric spaces with the help of 
the notion of continuous t-representable was introduced by Shakeri [13]. 
We refer to [13] for the notions appeared below. 

Consider the set ∗L  and the order relation ∗≤L  defined by: 

 {( ) ( ) [ ] },1and1,0,:, 21
2

2121 ≤+∈=∗ xxxxxxL  

( ) ( ) ( ) ( ) .,,,,,,, 212122112121
∗∈∀≤≤⇔≤ ∗ Lyyxxyxyxyyxx L  

Then ( )∗≤∗
LL ,  is a complete lattice [5]. 

A binary operation [ ] [ ] [ ]1,01,01,0: →×∗  is said to be a continuous 
t-norm if it satisfies the following conditions: (a) ∗  is associative and 
commutative; (b) ∗  is continuous; (c) aa =∗1  for all [ ];1,0∈a  (d) ba ∗  

dc ∗≤  whenever ca ≤  and ,db ≤  for each [ ].1,0,,, ∈dcba  

An intuitionistic fuzzy set ηξ,A  in a universal set U is an object ηξ,A  

{( ( ) ( )) },:, Uuuu AA ∈ηξ=  where for all ( ) [ ],1,0, ∈ξ∈ uUu A  and 
( ) [ ]1,0∈η uA  are called the membership degree and the non-membership 

degree, respectively, of ηξ∈ ,Au  and, furthermore, they satisfy 

( ) ( ) .1≤η+ξ uu AA  

A triangular norm (t-norm) on ∗L  is a mapping ( ) ∗∗ → LLT 2:  

satisfying the following conditions: ,,,,, ∗∈′′∀ Lzyxyx  (a) ( ( ) )xxT L =∗1,  

(boundary condition); (b) ( ) ( )( )xyTyxT ,, =  (commutativity); (c) 
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( )( ) ( )( )( )zyxTTzyTxT ,,,, =   (associativity); (d) ( xx L
′≤ ∗  and yy L

′≤ ∗  

( ) ( ))yxTyxT L
′′≤⇒ ∗ ,,  (monotonicity). 

If ( )TL L ,, ∗≤∗  is an Abelian topological monoid with unit ,1 ∗L  then 

T is said to be a continuous t-norm.  

The definitions of an intuitionistic fuzzy normed space (briefly IFN-
space) is given below (see [13]). 

Definition 1.2. Let µ  and v be membership and non-membership 

degree of an intuitionistic fuzzy set from ( )∞+× ,0X  to [ ]1,0  such that 

( ) ( ) ,1≤+µ tvt xx  for all Xx ∈  and .0>t  The triple ( )TPX v ,, ,µ  is said 

to be an intuitionistic fuzzy normed space (briefly IFN-space) if X is a 
vector space, T is a continuous t-representable, and vP ,µ  is a mapping 

( ) ∗→∞+× LX ,0  satisfying the following conditions: for all Xyx ∈,  

and ,0, >st  

(a) ( ) ;00,, ∗=µ Lv xP  

(b) ( ) ,1,, ∗=µ Lv txP  if and only if ;0=x  

(c) ( ) ( ),,, ,, α
=α µµ

txPtxP vv  for all ;0≠α  

(d) ( ) ( ( ) ( )).,,,, ,,, syPtxPTstyxP vvv µµµ ≥++  

In this case, vP ,µ  is called an intuitionistic fuzzy norm. Here, 

( ) =µ txP v ,,  ( ( ) ( ))., tvt xxµ  

In this short note, we show the intuitionistic fuzzy stability of the 
generalized Jensen-type functional equation 

( ) ( ) ( )yfyxfyxf 222 =−−+  

by using the fixed point alternative. 
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2. Main Results 

In the following, we show the intuitionistic fuzzy stability of the 
Jensen-type functional equation by using the fixed point alternative. A 
direct proof was given by Shakeri [13]. 

Theorem 2.1. Let X be a linear space, ( )MPZ v ,, ,µ′  be an IFN-space, 

ZXX →×φ :  be a function such that for some ,20 <α<  

( )( ) ( )( ) ( ),0,,,,2,2 ,, >∈αφ′≥φ′ µµ ∗ tXxtxxPtxxP vLv  (2.1) 

and 

( ( ) ) ,12,2,2lim , ∗=φ′µ∞→ L
nnn

vn
tyxP  (2.2) 

for all Xyx ∈,  and .0>t  Let ( )MPY v ,, ,µ  be a complete IFN-space. If 

YXf →:  is a mapping such that ,0,, >∈∀ tXyx  

( ) ( ) ( )( ) ( )( ),,,,2 ,, tyxPtyfyxfyxfP vLv φ′≥−−−+ µµ ∗  (2.3) 

and ( ) ,00 =f  then there exists a unique additive mapping YXA →:  

such that 

( ) ( )( ) ( ) ( )( ).2,,, ,, tyxPtxAxfP vLv α−φ′≥− µµ ∗  (2.4) 

Proof. Put xy =  in (2.3), we have 

( ( ) ( ) ) ( )( ),2,,,2
2

,, txxPtxfxfP vLv φ′≥− µµ ∗  

for all Xx ∈  and .0>t  

Consider the set { }YXgE →= :  and define a generalized metric d 

on E by 

( ) { ( ) ( )( ) ( )( ) }.0,,,,,:inf, ,, >∈∀φ′≥−∈= µµ
+

∗ tXxtxxPctxhxgPRchgd vLv  

It is easy to show that ( )dE,  is complete. Define EEJ →:  by ( ) =xJg  

( )xg 22
1  for all .Xx ∈  It is not difficult to see that 
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( ) ( ),,2, hgdJhJgd α≤  

for all ., Ehg ∈  It follows from above that 

( ) .2
1, ≤Jffd  

It follows from Theorem 1.1 that J has a fixed point in the set 
{ ( ) }.,:1 ∞<∈= hfdEhE  Let A be the fixed point of J. It follows from 

( ) 0,lim =AfJd n
n  that 

( ) ( ),2
2
1lim xfxA n
nn

=  

for all .Xx ∈  Since ( ) ,2
1,
α−

≤Afd  

( ) ( )( ) ( ) ( )( ).2,,, ,, tyxPtxAxfP vLv α−φ′≥− µµ ∗  

It follows from (2.3) that we have 

( [ ( ( ) ) ( ( ) ) ( )] ) ( ( ) ).2,2,2,2222
2
1

,, tyxPtyfyxfyxfP nnn
vL

nnn
nv φ′≥−−−+ µµ ∗  

By (2.2), A is additive. 

The uniqueness of A follows from the fact that A is the unique fixed 
point of J with the property that 

( ) ( )( ) ( ) ( )( ).2,,, ,, tyxPtxAxfP vLv α−φ′≥− µµ ∗  

This completes the proof.    
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